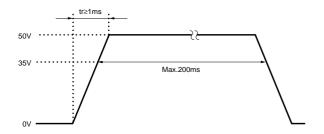
Dual output voltage regulator with power saving BA41W12SAT

The BA41W12SAT is a general-purpose power supply with outputs: 8V, 1A and 8V, 500mA. The IC is available in a compact TO220FP-5 package. The outputs can be turned off during the power saving state with a built-in switch. Also built in the IC are an overcurrent protection circuit, an overvoltage protection circuit, and a thermal shutdown circuit.

Applications

Car audio systems, VCRs, facsimiles, air conditions, and other household and industrial equipment

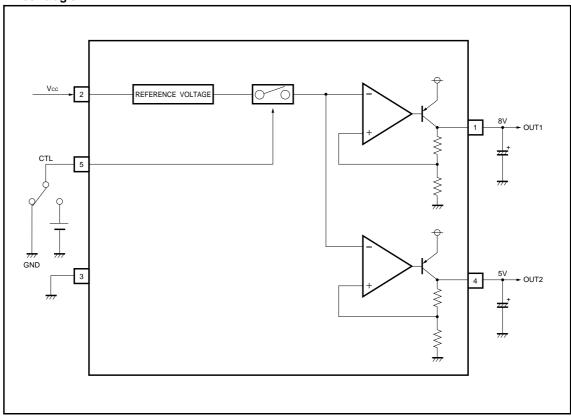
Features


- 1) Minimum I / O voltage differential is 0.5V or less.
- 2) Built-in protection circuits against overcurrent, over voltage, and overheat.
- 3) Available in a compact TO220FP-5 package (pins are bendable)
- 4) Zero power saving current. (Typ.)

● Absolute maximum ratings (Ta=25°C)

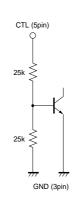
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	35	V
Power dissipation	Pd	2000*1	mW
Operating temperature	Topr	-40~+85	°C
Storage temperature	Tstg	-55~+150	°C
Peak applied voltage	VccPeak	50*2	V

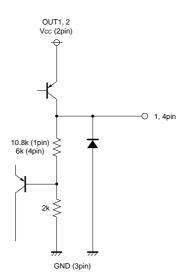
^{*1} Reduced by 16mW for each increase in Ta of 1°C over 25°C.


^{*2} Applied time is less than 200ms (tr \geq 1ms).

■Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	9.0	13	25	V


●Block diagram



Pin descriptions

F				
Pin No.	Pin name	Function		
1	OUT1	Output 1 (8V, 1A)		
2	Vcc	Power supply		
3	GND	Ground		
4	OUT2	Output 2 (5V, 500mA)		
5	CTL	ON / OFF switch		

●Input / output circuits

● Electrical characteristics (unless otherwise noted, Ta=25°C, Vcc=13.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Test circuit
Power save supply current	lsт	-	0	10	μА	OFF mode	Fig.4
Bias current	lь	-	3.0	5.0	mA	ON mode	Fig.4
<8V output section> (Output 1)						1	
Output voltage 1	Vo ₁	7.6	8.0	8.4	V	Io1=500mA	Fig.1
Minimum I / O voltage differential 1	ΔVo1	-	0.3	0.5	V	Io1=500mA Vcc=7.6V	Fig.3
Output current capacity 1	l ₀₁	1.0	-	-	Α		Fig.1
Ripple rejection ratio 1	R.R1	-	55	-	dB	lo1=500mA, f=120Hz ein=1Vrms	Fig.2
Input stability 1	Reg.I1	-	50	100	mV	Vcc=9→25V, Io=500mA	Fig.1
Load regulation 1	Reg.L1	-	100	150	mV	Io=5mA→1A	Fig.1
Output short-circuit current 1	los ₁	-	150	-	mA	Vcc=25V	Fig.5
<8V output section> (Output 2)							
Output voltage 2	V _{O2}	4.75	5.0	5.25	V	lo2=350mA	Fig.1
Minimum I / O voltage differential 2	ΔV02	-	0.3	0.5	V	lo2=350mA Vcc=4.75V	Fig.3
Output current capacity 2	l ₀₂	500	-	-	mA		Fig.1
Ripple rejection ratio 2	R.R2	-	60	-	dB	lo2=350mA, f=120Hz e _{IN} =1Vrms	Fig.2
Input stability 2	Reg.I2	-	50	100	mV	Vcc=6→25V, lo=350mA	Fig.1
Load regulation 2	Reg.L2	-	50	100	mV	Io=5mA→500mA	Fig.1
Output short-circuit current 2	los ₂	-	100	-	mA	Vcc=25V	Fig.5
<ctl section=""></ctl>							·
ON mode voltage	Vth₁	2.0	-	-	V	Output ACTIVE MODE	Fig.6
OFF mode voltage	Vth ₂	-	-	0.8	V	Output OFF MODE	Fig.6
Input high level current	lin	-	150	-	μΑ	Vth=5V	Fig.7

Note) All the characteristic values are measured with a 0.33μF-capacitor connected the input pin and 22μF-capacitor connected to the output pin. Measurements are made by using a plus (tw≤10ms, duty cycle≤5%) in all cases but noise voltage and the ripple rejection ratio.

Measurement circuits

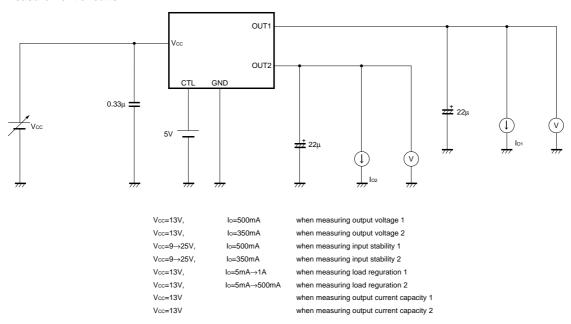
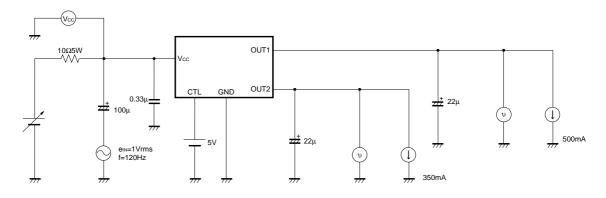
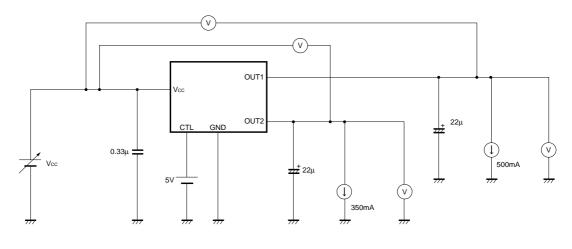




Fig.1 Circuit for measuring output voltage, input stability, load regulation, and output current capacity

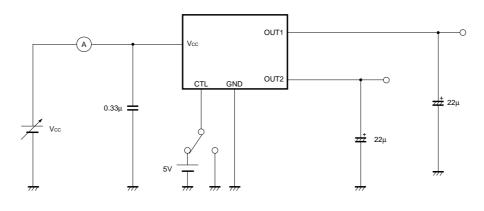

Vcc=13V, Io1=500mA when measuring the ripple rejection ratio 1 Vcc=13V, Io2=350mA when measuring the ripple rejection ratio 2

Fig.2 Circuit for measuring ripple rejection ratio

Vcc=7.6V when measuring minimum I / O voltage difference 1
Vcc=4.75V when measuring minimum I / O voltage difference 2

Fig.3 Circuit for measuring minimum I / O voltage difference

 $\label{eq:Vcc=13V} $$ Vcc=13V, \ lo=0mA, \ Vc\pi=5V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=0V $$ when measuring power save supply current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=5V $$ when measuring power save supply current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=5V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vc\pi=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \ Vcm=0V $$ when measuring bias current $$ Vcc=13V, \ lo=0mA, \$

Fig.4 Circuit for measuring bias current and power save supply current

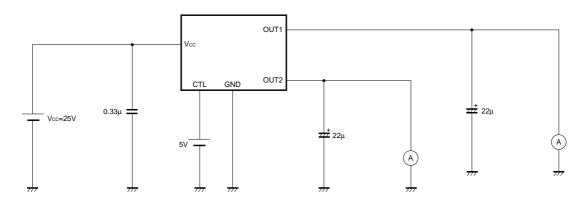


Fig.5 Circuit for measuring output short-circuit current

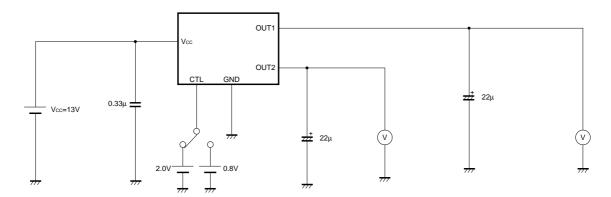


Fig.6 Circuit for measuring mode switching voltage

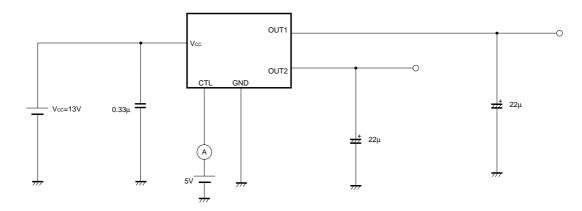
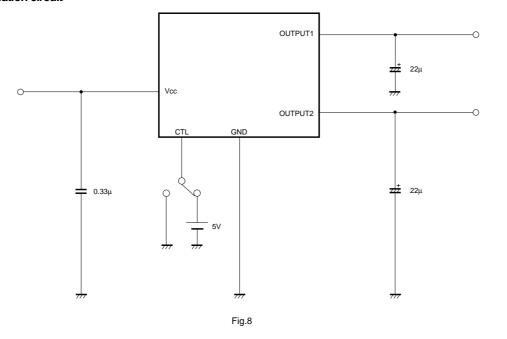



Fig.7 Circuit for measuring input high level current

Application circuit

Operation notes

(1) Although the circuit examples included in this hand-book are highly recommendable for general use, you should be thoroughly familiar with circuit characteristics as they relate to your own use conditions. If you intend to change the number of external circuits, leave an ample margin, taking into account discrepancies in both static and dynamic characteristics of external parts and Rohm ICs. In addition, please be advised that Rohm cannot provide complete assurance regarding patent rights.

(2) Operating power supply voltage

When operating within the proper ranges of power supply voltage and ambient temperature, most circuit functions are guaranteed. Although the rated values of electrical characteristics cannot be absolutely guaranteed, characteristic values do not change drastically within the proper rages.

(3) Power dissipation (Pd)

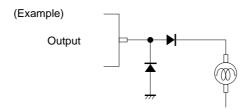
Refer to the power dissipation characteristics in Fig.12. If power dissipation exceeds the allowable limit, the fuctionality of the IC will be degraded (such as reduction of current capacity by increased chip temperature). Make sure to use the IC within the allowable range of power dissipation with a sufficient margin.

(4) Preventing oscillation at each output and bypass capacitor

To stop output oscillation, make sure to connect a capacitor between GND and each output pin (capacitance of at least $10\mu\text{F}$ over the whole operating temperature is recommended). Oscillation can occur if capacitance is susceptible to temperature. We recommended using a tantalum capacitor with minimal changes in capacitance. Also, output can be further stabilized by connecting a bypass capacitor of about $0.33\mu\text{F}$ between Vcc and GND.

(5) Overcurrent protection circuit

An overcurrent protection circuit is installed in each output system, based on the respective output current. This prevents IC destruction due to overcurrent, by limiting the current with a curve shape of "7" in the voltage-current graph. The IC is designed with margins so that current flow will be restricted and latching will be prevented even if a large current suddenly flows current suddenly flows through a large capacitor. Note that theses protection circuits are only good for preventing damage from sudden accidents. Make sure your design does not case the protection circuit to operate continuously under transitional conditions (for instance, if output is clamped at $1V_F$ or higher, short mode circuit operates at $1V_F$ or lower). Note that the capacitance is negatively correlated with temperature.


(6) Thermal protection circuit

A built-in thermal protection circuit prevents thermal damage to the IC. All outputs are turned off when the circuit operates, and revert to the original state when the temperature drops to a certain level.

- (7) We recommend installing a bypass line in your application if there is a mode where potential difference between each output and input (Vcc) or GND is reversed from the normal state. A reversed mode may cause damage to the IC.
- (8) Although the quality of this IC is rigorously controlled, the IC may be destroyed when the applied voltage or the operating temperature exceeds their absolute maximum ratings. Because short mode or open mode cannot be specified when the IC is destroyed, be sure to take physical safety measures, such as fusing, if any of the absolute maximum ratings might be exceeded.

(9) Recommended to put diode for protection in case of output pin connected with large load of impedance or reserve current occurred at initial and output off.

- (10) When used within a strong magnetic field, be aware that there is a slight possibility of malfunction.
- (11) We are confident in recommending the above application circuit example, but we ask that you carefully check the characteristics of this circuit before using it. If using circuit after modifying other external circuit constants, be careful to ensure adequate margins for variation between external devices and this IC, including not only static characteristics but also transient characteristics.

This IC is a bipolar IC which (as shown in Figure 9) has P+ isolation in the P substrate and between the various pins. A P-N junction is formed form this P layer and the N layer of each pin. For example the relation between each potentials is as follows,

(When GND > PinB and GND > PinA, the P-N junction operates as a parasitic diode.)

(When PinB > GND > PinA, the P-N junction operates as a parasitic transistor.)

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly, you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.

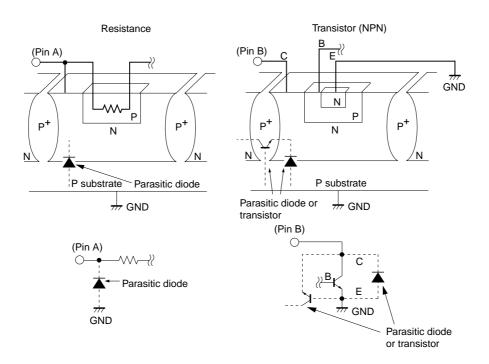


Fig.9 Simplified structure of bipolar IC

• Electrical characteristic curves

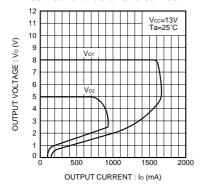


Fig.10 Output current capacity characteristics (Typ.)

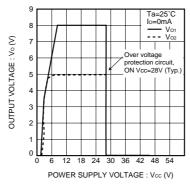


Fig.11 Output voltage characteristics (Typ.)

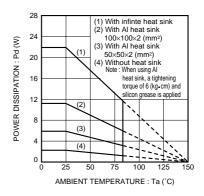
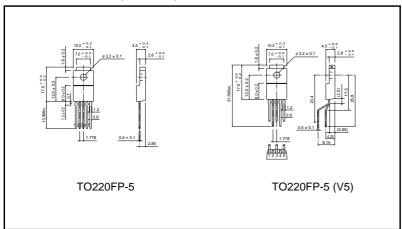



Fig.12 Thermal derating characteristics

●External dimentions (Units : mm)

